Performance of Segmented Thermoelectric Cooler Micro-Elements with Different Geometric Shapes and Temperature-Dependent Properties
نویسندگان
چکیده
In this work, the influences of the Thomson effect and the geometry of the p-type segmented leg on the performance of a segmented thermoelectric microcooler (STEMC) were examined. The effects of geometry and the material configuration of the p-type segmented leg on the cooling power (Qc) and coefficient of performance (COP) were investigated. The influence of the cross-sectional area ratio of the two joined segments on the device performance was also evaluated. We analyzed a one-dimensional p-type segmented leg model composed of two different semiconductor materials, Bi2Te3 and (Bi0.5Sb0.5)2Te3. Considering the three most common p-type leg geometries, we studied both single-material systems (using the same material for both segments) and segmented systems (using different materials for each segment). The COP, Qc and temperature profile were evaluated for each of the modeled geometric configurations under a fixed temperature gradient of ∆T = 30 K. The performances of the STEMC were evaluated using two models, namely the constant-properties material (CPM) and temperature-dependent properties material (TDPM) models, considering the thermal conductivity (κ(T)), electrical conductivity (σ(T)) and Seebeck coefficient (α(T)). We considered the influence of the Thomson effect on COP and Qc using the TDPM model. The results revealed the optimal material configurations for use in each segment of the p-type leg. According to the proposed geometric models, the optimal leg geometry and electrical current for maximum performance were determined. After consideration of the Thomson effect, the STEMC system was found to deliver a maximum cooling power that was 5.10% higher than that of the single-material system. The results showed that the inverse system (where the material with a higher Seebeck coefficient is used for the first segment) delivered a higher performance than the direct system, with improvements in the COP and Qc of 6.67% and 29.25%, respectively. Finally, analysis of the relationship between the areas of the STEMC segments demonstrated that increasing the cross-sectional area in the second segment led to improvements in the COP and Qc of 16.67% and 8.03%, respectively.
منابع مشابه
Analysis of a Hybrid Thermoelectric Microcooler: Thomson Heat and Geometric Optimization
In this work, we analyze the thermodynamics and geometric optimization of thermoelectric elements in a hybrid two-stage thermoelectric micro cooler (TEMC). We propose a novel procedure to improve the performance of the micro cooler based on optimum geometric parameters, cross sectional area (A) and length (L), of the semiconductor elements. Our analysis takes into account the Thomson effect to ...
متن کاملCoefficient of Performance Optimization of a Single Stage Thermoelectric Cooler
In thermoelectric coolers (TECs) applied external voltage potential is generated to a temperature difference based on the Peltier effect. Main and basic structure of TECs is in the form of single stage device. Due to the low efficiency, especially low coefficient of performance (COP) of thermoelectric coolers, optimal design of geometrical parameters of such devices is vital. For this purpose, ...
متن کاملMicro-thermoelectric cooler: interfacial effects on thermal and electrical transport
The flows of heat and electricity in a column-type micro-thermoelectric cooler are analyzed by modeling the various interfacial resistances. Electron (barrier tunneling) and phonon (diffuse mismatch) boundary resistances at the thermoelectric/metal interface, and thermal non-equilibrium between electrons and phonons adjacent to this interface (cooling length), increase the thermal conduction re...
متن کاملEffect of conjugate heat transfer in designing thermoelectric beverage cooler
Peltier technology opens new opportunities for special applications. In the current project, this technology was applied to design and fabricate a portable thermoelectric beverage cooler and thermoelectric cup. The simulation and results of the experiment showed that the common beverage cooler is not a suitable design for ignoring the effect of natural convection in cooling. In our thermoel...
متن کاملSegmented Power Generator Modules of Bi2Te3 and ErAs:InGaAlAs Embedded with ErAs Nanoparticles
We report the fabrication and characterization of segmented element power generator modules of 254 thermoelectric elements. The element is 1 mm × 1 mm in area, which consists of 300 μm thickness Bi2Te3 and 50 μm thickness ErAs:(InGaAs)1-x(InAlAs)x, so that each segment can work at different temperature ranges. Erbium arsenide metallic nanoparticles are incorporated to create scattering centers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018